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On reduction of turbulent wall friction through
spanwise wall oscillations

By M. R. D H A N A K AND C. S I
Department of Ocean Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

(Received 29 September 1997 and in revised form 22 October 1998)

A model for turbulent skin friction, proposed by Orlandi & Jimenez, involving
consideration of quasi-streamwise vortices in the cross-stream plane, is used to study
the effect on the skin friction of oscillating the surface beneath the boundary layer
in the spanwise direction. Using an exact solution of the Navier–Stokes equations, it
is shown that the interaction between evolving, axially stretched, streamwise vortices
and a modified Stokes layer on the oscillating surface beneath, leads to reduction in
the skin friction, the Reynolds stress and the rate of production of kinetic energy,
consistent with predictions based on experiments and direct numerical simulations.

1. Introduction
Experimental and direct-numerical-simulation (DNS) studies suggest that coherent

quasi-streamwise vortices in the wall region of a turbulent boundary layer play a
significant role in the development of shear stress and turbulence production in the
boundary layer. Robinson (1991) has presented a conceptual view of the type of
structures frequently observed in a turbulent boundary layer. In the near-wall region,
the coherent structures are dominantly quasi-streamwise, occurring singly or in pairs,
the former being more frequent. These coherent structures occur intermittently in time
and space, but they are the principal contributors to averaged flow quantities and
therefore play an important role in the statistics of the near-wall turbulence. Although
the processes governing the fluid motion in a turbulent boundary layer, including the
generation of these quasi-streamwise coherent structures, are fully three-dimensional
(see Schoppa & Hussain 1997, for example), crucial aspects of the interaction of
these structures with the wall surface are fairly well described by the motion in the
cross-plane. Orlandi & Jimenez (1994) presented a two-dimensional conceptual model
which captures these aspects of the interaction in the near-wall region. The model
involves consideration of the local solutions of the Navier–Stokes equations and
is based on the assumption that the spatial variation of a quasi-streamwise vortex
along its length is much slower than the characteristic variation in the transverse,
cross-stream, plane. Thus, sufficiently fast phenomena can be studied locally in a two-
dimensional plane by neglecting, in the first instance, the variation in the longitudinal
direction. Using the model, they predicted the formation of the low-speed streaks
and the amplification of the skin-friction owing to the presence of the streamwise
vorticity. Previously, Orlandi & Jimenez (1991) took an approximate account of the
influence of a straining flow, induced by larger-scale outer eddies, for example, on
the interaction in their consideration; the straining flow has the effect of stretching
the vortices axially, intensifying the associated vorticity, as well as moving the coherent
vortices closer to the wall, thereby accentuating the interaction.
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Figure 1. Schematics of the model flow.

In this paper, we exploit the cross-plane model of Orlandi & Jimenez to examine
aspects of turbulent boundary-layer control, involving spanwise motion of the wall.
Our approach is similar to theirs except that we take full account of vortex stretch-
ing by incorporating an appropriate modification to their vorticity-streamfunction
formulation. Allowing for the vortex stretching renders the flow three-dimensional.
The formulation has a disadvantage in terms of computational time used, but allows
proper consideration of the influence of the straining flow, using an exact solution of
the Navier–Stokes equations.

Several recent experimental and direct numerical simulation studies (Bradshaw &
Pontikos 1985; Moin et al. 1990; Jung, Mangiavacchi & Akhavan 1992; Laadhari,
Skandaji & Morel 1994; Choi & Clayton 1998) have shown that imposition of an
oscillatory spanwise pressure gradient or spanwise oscillation of the wall beneath the
boundary layer, temporarily inhibits production of turbulence in the flow, leading to
transient reductions in all turbulent quantities including the Reynolds shear stress and
the rate of production of turbulent kinetic energy. In particular, in a direct simulation
of the turbulent flow in a channel, Jung et al. (1992) found that an induced oscillatory
motion of a wall of the channel or the introduction of an oscillatory cross-flow resulted
in significant attenuation of turbulence production and a persistent reduction in skin
friction. It seems evident that these observed changes are related to the modification of
the quasi-streamwise flow structures. We study the evolution of the coherent structures
and their interaction with the surface beneath, when the latter is subjected to spanwise
oscillation. Within the limitations of our model, we show that the interaction of the
coherent vortex structures with the Stokes layer on the wall leads to a reduction in
the skin friction, the Reynolds stress and the rate of production of fluctuating kinetic
energy. The considerations illustrate how Orlandi–Jimenez type models can be used
to study critical issues in boundary-layer control at a low computational cost. Similar
studies were carried out by Choi, Moin & Kim (1994) for example.

2. Formulation and numerical method
We consider the flow in a Cartesian coordinate system Ox∗y∗z∗ with Ox∗ along the

streamwise direction so that y∗ – z∗ is the cross-plane of interest (figure 1). The flow
variables are non-dimensionalized with respect to the wall units. Thus x∗ = (ν∗/u∗τ)x,
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t∗ = (ν∗/u∗2τ )t, u∗ = u∗τu, ω∗ = (u∗2τ /ν∗)ω, p∗ = ρ∗u∗2τ p, and so on, where u∗τ = (τ∗w/ρ∗)1/2

is the friction velocity, τ∗w is the shear stress at the wall, ρ∗ is the fluid density and ν∗
is the kinematic viscosity; the usual notation x+ ≡ x and t+ ≡ t is also used below
without ambiguity.

As in Dhanak, Dowling & Si (1997), we consider the flow in the vicinity of the
x = 0 plane, with the streamwise structure modelled by a two-dimensional vortex
under-going axial stretching, distortion and translation in an imposed straining flow.
The latter, represented by a Hiemenz flow, (xφ(y),−φ(y), 0), approximately accounts
for the flow induced by coherent structures in the outer flow field. The straining
flow stretches vortex elements in the streamwise direction; according to (Schoppa &
Hussain 1997), stretching plays an essential role in the generation of the coherent
vortex structures. The function φ(y) is chosen here so that at large distances from
the surface, the imposed flow is of the form, (ax,−ay, 0), where a denotes the rate of
axial strain associated with the outer flow. This choice of the imposed flow is based
on the consideration of the flow field induced locally, in the vicinity of x = 0, by
nearby three-dimensional coherent structures, for example, by the ‘head’ of a local
hairpin-type structure. The velocity induced by such a structure acts to stretch the
vortex elements aligned with the streamwise direction and drive them towards the
wall (Dhanak & Dowling 1995). Alternatively, if the streamwise vortex is regarded as
a misaligned attached eddy, then the straining flow may be considered to represent
the effect of the misalignment.

The velocity field associated with a coherent streamwise vortex evolving under
the imposed background flow is given by an exact solution of the Navier–Stokes
equations, of the form,

u = [q0(y, z, t) + x(φ′(y) + q1(y, z, t)),−φ(y) + v1(y, z, t), w1(y, z, t)], (2.1)

where q0, q1, v1 and w1 satisfy equations described below, while φ(y) satisfies (Schlicht-
ing 1968):

φ′′′ + φφ′′ − φ′2 + a2 = 0; φ(0) = φ′(0) = 0; φ′(y) ∼ a as y →∞. (2.2)

In view of (2.1), the vorticity ω(x, y, z, t) is given by

ω(x, y, z, t) = (ω0x, ω0y + xω1y, ω0z + xω1z);

ω0x = ∂w1/∂y − ∂v1/∂z; ω0y = ∂q0/∂z; ω1y = ∂q1/∂z;

ω0z = −∂q0/∂y; ω1z = −(∂q1/∂y + φ′′).

 (2.3)

The streamwise component of vorticity ω0x, satisfies(
D

Dt
− ∇2

)
ω0x = ω0x(q1 + φ′), (2.4)

where

∇2 =
∂2

∂y2
+

∂2

∂z2
,

D

Dt
=

∂

∂t
+ (v1 − φ)

∂

∂y
+ w1

∂

∂z
.

As shown by Orlandi & Jimenez (1991), the equation for the streamwise contribu-
tion q0 decouples from the other equations and does not influence the evolution in the
cross-plane; it can be evaluated as a passive quantity once the cross-stream velocity
components are determined. On substituting (2.1) into the momentum equations, we
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obtain equations for q0 and q1,(
D

Dt
− ∇2

)
q0 = −q0(φ

′ + q1)− C1, (2.5)

(
D

Dt
− ∇2

)
q1 = −q1(2φ

′ + q1)− v1φ
′′, (2.6)

where the pressure gradient ∂p/∂x = C1, a constant, ensures that (2.1) is an exact
solution of the equations of motion; C1 is determined by initial conditions. We write

v1 = ∂ψ/∂z −
∫ y

0

q1dy; w1 = −∂ψ/∂y. (2.7)

If q1 ≡ 0, then ψ(y, z, t) represents the streamfunction (cf. Orlandi & Jimenez 1994).
Using (2.4) and the continuity equation we obtain,

∇2ψ = −ω0x +

∫ y

0

(∂q1/∂z)dy. (2.8)

Equations (2.4) and (2.6–2.8), together with the appropriate boundary and initial
conditions, suffice to determine the motion in the cross-plane, these equations being
independent of q0.

The contribution q1 to the streamwise velocity, as well as cross-stream components
v1 and w1, vanish as y →∞, so that away from the wall the influence of the coherent
vortex is negligible and the velocity field is solely due to the outer background flow.
Thus

u(x, y, z, t) ∼ (q00(y) + xφ′,−φ, 0) as y →∞,
where q00(y) is the streamwise velocity in the absence of the vortex and the straining
flow. This condition is applied at the upper boundary of the computational domain,
taken to be sufficiently far away, at y = Y . Further, the flow is considered to be
periodic in the z-direction, with a wavelength Z . Thus, the boundary conditions for
the velocity are taken to be:

u(x, 0, z, t) = (0, 0,W0 cos [2π(t+ χT )/T ]); u(x, y, z + Z, t) = u(x, y, z, t);

u(x, Y , z, t) = (q00(Y ) + xφ′(Y ),−φ(Y ), 0).

}
(2.9)

Here T is the period of oscillation, W0 is its amplitude and χ is a constant (0 6 χ < 1)
which represents the phase of the oscillation at time t = 0 when the streamwise vortex
structures are introduced in the flow.

The initial velocity distribution is taken to be

u(x, y, z, 0) = (q00(y) + xφ′(y),−φ(y), w00(y, 0)). (2.10)

In view of (2.5), q00(y) satisfies

q′′00 + φq′00 − φ′q00 − C1 = 0; q00(0) = 0; q′00(0) = 1, (2.11)

where the constant C1 is chosen to ensure that q′00(Y ) = 1. The latter condition implies
that far away from the wall the streamwise velocity varies linearly. Other choices are
possible; however, the exact choice is not critical to present considerations. The term
q00 is shown as a solid line in figure 2(a). The spanwise component w00(y, t) is an
exact solution of the Navier–Stokes equation, satisfying

∂w00

∂t
− φ∂w00

∂y
− ∂2ω00

∂y2
= 0, (2.12)
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Figure 2. (a) Effect of spanwise oscillation, with T = 100, W0 = 12, on mean streamwise velocity
profile, averaged with respect to time and z, for the case Γ = 300, a = 0.15: ——, without oscillation;
−·− ·−, with oscillation, χ = 1

2
; —×— with oscillation, averaged over phase χ. – – –, initial profile.

(b) Amplitude functions Wc and Ws for the background oscillatory flow in the cross-plane in the
presence of a straining flow with a = 0.15 is compared with corresponding functions associated
with a Stokes layer (a = 0). Period T = 100, amplitude W0 = 12.

together with the boundary condition (2.9) at the wall; the solution belongs to Lin’s
class of exact solutions and was first suggested by Wuest (1952, see Stuart 1963,
p. 405). The term w00(y, t) represents the transverse velocity in a Stokes layer in the
presence of axial stretching and is given by

w00 = Wc(y, T ) cos [2π(t/T + χ)] +Ws(y, T ) sin[2π(t/T + χ)], (2.13)

where Ws and Wc satisfy appropriate ordinary differential equations. In the absence
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of the straining flow (i.e. φ(y) ≡ 0), Ws and Wc are, respectively, given by (Schlichting,
p. 85):

Wc = W0e
(−π/T )1/2y cos [(π/T )1/2y]; Ws = W0e

−(π/T )1/2y sin [(π/T )1/2y], (2.14)

where W0 is a constant. The thickness of the layer, in this case, increases with the
increase in the period of oscillation, so that we expect the intensity of the interaction
between the coherent structures and the Stokes layer to increase with the increase
in period of oscillation, at least for small enough periods. For larger periods, the
magnitude of the vorticity, for a fixed y, becomes the case smaller according to
∼ 1/T 1/2 and we accordingly expect the effect to diminish. When a plane straining
flow is present, the layer characteristics are modified as illustrated in figure 2(b) for a
particular value of T . Most significantly, the layer thickness is reduced.

We determine w00 from (2.13) for various values of χ, each case corresponding to
the phase of the oscillation relative to the time of appearance of the coherent vortices
in the wall region. The wall statistics are then determined from averaging over the
different phases.

The initial vorticity distribution can be written in the form

ω(x, y, z, 0) =

(
ωx00(y, z) +

∂w00

∂y
, 0,−q′00 − xφ′′

)
(2.15)

where the streamwise component ωx00(y, z) is to be appropriately prescribed. Here,
we consider ωx00 to be that given by Orlandi & Jimenez (1994), where the coherent
vortices develop from vortex sheets in the buffer region, although other appropriate
distributions may be considered. Thus

ωx00(y, z) =
Γhπ1/2

2S
exp

(
−n

2

h2

)
sin (πs/S), (2.16)

where s = (x − x1) · ŝ, n = (x − x1) · (i × ŝ) with ŝ = (x2 − x1)/S and S = |x2 − x1|.
h = 0.75 and x1 = (0, 15, 10) and x2 = (0, 10, 50) for the first vortex sheet and
x1 = (0, 10, 50) and x2 = (0, 5, 60) for the second sheet. An alternative introduction of
the vortices is considered in Dhanak et al. (1997). The present model is based on the
assumption that whereas the formation of the coherent structures involve complex
three-dimensional processes, details of which are not considered here, the surface skin
friction is principally governed by the subsequent interaction of the quasi-streamwise
structures with the rigid surface.

The numerical method of solution is similar to that described by Orlandi & Jimenez
(1994). Thus, the problem is solved in the rectangular domain 0 6 z 6 Z, 0 6 y 6 Y
with periodic boundary conditions at z = 0 and z = Z . In the results presented
here, Y = Z = 100 was chosen; this is consistent with the minimal flow unit
proposed by Jimenez & Moin (1991). Equations (2.4)–(2.7) are solved in a time
marching scheme with the viscous and the nonlinear terms discretized by centred
differences. Time advancement is via a third-order Runge–Kutta method with two-
level storage, explicit for the nonlinear terms and implicit for the viscous terms.
For each subtimestep, the velocity information is updated by solving two tridiagonal
matrices using an alternating direction implicit (ADI) method for the implicit viscous
terms. The vorticity boundary condition used is second-order accurate in time and
space, consistent with the accuracy of the difference equations. Poisson equation (2.8)
for ψ together with boundary conditions (2.9), is solved using fast Fourier transforms
in the z-direction and tridiagonal solvers in the y-direction. The numerical code was



Reduction of turbulent wall friction through wall oscillations 181

checked by reproducing, to good agreement, the results of Orlandi & Jimenez (1994).
Results presented here are for a 128 × 128, equally spaced, rectangular grid. The
adequacy of this was verified through comparison with computations with 64 × 64
and 256 × 256 grids; for a measure of the computational error in the calculation,
please see Dhanak et al. (1997). Evolution of the vortices was considered over a time
Tf = 40, with a timestep ∆t = 40

1024
.

The exact solution described above may be extended to consider a general outer
flow, approximately valid in the vicinity of x = 0, by expanding the latter as well as
other flow quantities in terms of a Taylor series in x (cf. equation (2.1)), substituting the
expressions in the Navier–Stokes equations and approximately solving the resulting
set of equations of the type (2.5)–(2.6).

3. Results
The parameters of the problem are the initial total circulation around each vortex

or vortex strength Γ , the strain rate a, the initial streamwise vorticity distribution,
the oscillation period T , the amplitude W0 and the phase χ. Γ ≡ Γ+ also denotes
the vortex Reynolds number of the flow. Robinson (1991) gives statistics of the
strength, height and size of coherent streamwise circular vortex structures observed
in a numerical simulation of boundary-layer flow at a particular Reynolds number.
Typically, Γ+ ∼ 50−500, and the vortices are observed in the buffer region at heights
∼ 10− 20 wall units, and have radii R+ ∼ 5− 20. Further, Orlandi & Jimenez (1991)
estimate that the axial strain rate a+ ∼ 0.1 − 0.3. For the purpose of examining the
effect of spanwise oscillation, we consider the initial form of the coherent structures to
be in the form of sheets given by (2.16), as in Orlandi & Jimenez (1994), but with the
strength and strain rate given by Γ+ = ±300 and a+ = 0.15; this distribution quickly
evolves into what may be considered as fairly representative, although the strength of
the vortices need not be equal and opposite. Similar results to those presented here
may be obtained using single vortices instead of the pair. The effect of varying Γ and
a is examined later.

The effect of the oscillation on the evolution of the chosen initial distribution was
considered for a range of values of T and χ for a fixed value of W+

0 = 12, this value
being chosen so that it corresponds to that considered by Jung et al. (1992) in their
DNS study. A number of cases corresponding to a range of values of the period
T were computed. The streamwise velocity profile averaged over the spanwise (z)
domain and over time t for the particular case in which the wall oscillates with period
T+ = 100 is compared in figure 2(a) with the corresponding profile in the absence
of the oscillation and with the intital profile. The profiles may be compared with the
mean profiles in the DNS study of Jung et al. and with the mean profiles measured
in experiments (Laadhari, Skandaji & Morel 1994). The effect of the oscillation is to
reduce the mean streamwise velocity gradient.

The development of the vorticity distribution in the cross-plane with respect to
time is illustrated in figure 3 where streamwise vorticity contours are depicted; the
convention used is that positive values of ω0x imply clockwise rotation. Figure 3(a)
depicts the case in the absence of wall oscillation. The vortex sheets roll-up in time
t+ = O(1). The interaction between each vortex structure and the wall beneath
results in the development of a layer of vorticity of opposite sign to that of the
vortex on the wall. As pointed out by Orlandi & Jimenez (1991), the straining flow
induces a movement of the vortex towards the wall and the subsequent interaction
results in ejection of the vorticity in this layer away from the wall. As the distance



182 M. R. Dhanak and C. Si

40

30

20

10

0

40

30

20

10

0

40

30

20

10

0
20 40 60 20 40 60

40

30

20

10

0

(a)
t = 0

–0.1
0.2

20 40 60

–0.1

0.2

–0.1

15.0 22.5

–0.1

7.5

20 40 60

40

30

20

10

0

–0.1

15.0

20 40 60

40

30

20

10

0

–0.1

22.5

20 40 60

z

y

40

30

20

10

0

40

30

20

10

0

40

30

20

10

0
20 40 60 20 40 60

40

30

20

10

0

(b)
t = 7.5

–0.1

20 40 60

–0.1 –0.1

15.0 22.5

–0.1

7.5

20 40 60

40

30

20

10

0

–0.1

15.0

20 40 60

40

30

20

10

0

0.2

22.5

20 40 60

z

y

(c)

40

30

20

10

0

–0.1

7.5

20 40 60

40

30

20

10

0

0.2

15.0

20 40 60

40

30

20

10

0

0.2

22.5

20 40 60

(d )

40

30

20

10

0

–0.1

7.5

20 40 60

40

30

20

10

0

0.2

15.0

20 40 60

40

30

20

10

0

0.2

22.5

20 40 60

(e )

Figure 3. For caption see facing page.
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separating the vortices gets smaller, the self-induced velocity of the pair tends to
move away from the surface, but this motion is opposed by the straining flow and the
vortices undergo a mutual, viscous annihilation at a finite distance from the wall. The
evolution was followed for time t+ = 40, at which time the coherent vortices, though
still distinguishable, are very weak. Orlandi & Jimenez, on the basis of dimensional
analysis, however, argue that the quasi two-dimensional interaction in the cross-
plane can strictly be regarded as representative of flow associated with coherent
structures in the near-wall region of a turbulent boundary layer for times t+ = O(20);
for subsequent times the three-dimensional effects neglected in the model become
important and need to be accounted for. In figure 4(a), we show the instantaneous
streamwise velocity contours in the cross-plane corresponding to the evolution shown
in figure 3(a). As pointed out by Orlandi & Jimenez, these feature a central region
of low-speed fluid which is ejected away from the surface, flanked by regions of
high-speed fluid which are swept towards the surface, forming a characteristic low-
speed streak. The corressponding instantaneous distributions of u′v′, representing
local contribution to Reynolds stress are shown in figure 5(a). The figure clearly
shows the dominance of the region over which −u′v′ is positive, implying an increase
in Reynolds stress and the rate of production of turbulent energy.

For a given period and amplitude of spanwise wall oscillation, the influence of
the oscillation on the interaction depends on its phase χ relative to the time of
introduction of the streamwise vortices. Figure 3(b–e) illustrates the contours of
evolving vorticity, corresponding to those shown in figure 3(a), in cases where the
wall performs spanwise oscillations with period T+ = 100 and amplitude W+

0 = 12
for a range of values of χ. The modified Stokes layer (see figure 2b) is fairly thin.
However, depending on the value of χ, it not only affects the viscous response at
the surface, but also significantly influences the evolution of the vortex pair. For the
cases shown in figure 3(b) and 3(c) (χ = 0, 1

8
respectively), the wall moves to the

right over the lifetime of the eddy and the modified Stokes layer is well established
when the vortices are introduced. In the ensuing interaction, the left vortex gets swept
underneath the right vortex and undergoes rapid viscous annihilation. By around
t+ = 20, neither of the coherent structures are visible, in contrast to the case in
the absence of oscillation (figure 3a) when the structures are still distinguishable at
t+ = 40. The structure of the wall response layer is also significantly different. Further,
the relative orientation of the vortices during the evolution implies a significantly less
efficient transfer of vertical momentum than in the case without oscillation. The
associated effects on the streamwise velocity and local contribution to Reynolds
stress are shown in figures 4(b, c) and 5(b, c), respectively. By around t+ = 4, the
development of the low-speed streak is signficantly different and vanishes rapidly by
around t+ = 20. The oscillations induce mixing of high-speed and low-speed fluid
close to the wall. The corresponding change in the distribution of u′v′ can be seen
from figure 5(b) and 5(c); the regions of positive contribution to Reynolds stress
(−u′v′) are significantly reduced and subsequently vanish much earlier than in the
absence of oscillation.

Figure 3. (a) Evolution of streamwise vorticity in the absence of oscillation. Γ = 300, a = 0.15.
(b)–(e) Evolution of streamwise vorticity for spanwise oscillation of the surface y = 0, with period
T = 100 and amplitude W0 = 12 and with Γ = 300, a = 0.15: (b) χ = 0; (c) χ = 1

8
; (d) χ = 1

4
;

(e) χ = 1
2
. In each case, vorticity contours in (y, z) cross-plane are shown at various times. ∆ωx = 0.3,

shaded contours denoting positive ωx.
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For χ = 1
4
, we see from (2.13) that at t = 0, the modified Stokes layer is rather

weak and the wall begins to move from right to left. As a result the influence of
the oscillation on the interaction is relatively slower, with the structures maintaining
their status fairly well (figure 3d) until around t+ = 10 when the right vortex is
swept underneath the left vortex. Consequently, the vortices undergo rapid viscous
annihilation as before. The associated delayed annihilation of the low-speed streak
and the regions of positive contributions to the Reynolds stress (−u′v′) can be seen
from figures 4(d) and 5(d), respectively.

For χ = 1
2

the oscillation has a maximum impact on the coherent vortex pair
(figure 3e). The modified Stokes layer is again well established at t = 0, with the wall
surface moving from right to left and induces the right vortex to move beneath the left
vortex, thereby inducing, once again, a rapid annihilation of the coherent structures
and significant mixing of low-speed and high-speed fluid (figure 4e) and a significant
reduction in the region over which (−u′v′) is positive (figure 5e). By around t+ = 10,
the coherent structures have almost vanished.

Figure 6(a) shows the effect of the oscillation on the growth of skin friction with
time for the particular case in which the period of oscillation is T+ = 100. The

average, τw = ∂q0/∂y|y=0, over z is shown plotted as a function of time. In the
absence of the oscillation, Orlandi & Jimenez (1994) had shown that for small times
with a+ = 0, the skin friction increases with time. We see from figure 6(a) that this
is true also for non-zero values of a and that for larger times as the viscous pair
undergo viscous annihilation, the skin friction reduces to its original value of 1, the
relaxation time being around t+ = 40. When the wall oscillates, the maximum value of
the skin friction and the relaxation time are both reduced, the value of the reduction
depending on the phase χ; the maximum reduction corresponds to χ = 1

2
.

Assuming that it is equally likely that the coherent structures are generated in a
particular phase, we average over these phases. In figure 6(b), this average value,

denoted τ
(osc)m
w (t+), is compared with the corresponding value, τ(0)

w (t+), in the case
without oscillation. For the case T+ = 100 depicted, the maximum value of τw (osc)m is

10% smaller and the relaxation time 42% shorter than for τ(0)
w .

In figure 7, we examine the influence of the oscillation period T on the results. The

time evolution of the ratio Q(t+) = τ
(osc)m
w /τ

(0)
w between the mean (with respect to z

and the phases χ) skin friction in the presence of the oscillation to that in the absence
of it, is shown in figure 7(a). Although it is not possible to make a direct comparison
with the results of Jung et al.’s (1992) DNS study, this figure is consistent with their
figure 1 for t+ < 20. We see from figure 7(a) that for t+ > 3, Q decreases with time
from its value of around 1. The reduction is weakly dependent on period for these
small times, though at around t+ = 20, it is clear that, of the cases considered, Q is
minimum for T+ = 75 and maximum for T+ = 500. For t+ > 20, the influence of
three-dimensional effects become important and the present quasi two-dimensional
model is no longer adequate. Further, the influence of larger-scale structures in the
outer region of the boundary layer, not included in the present model, will become
significant. In their DNS simulation, Jung et al. found that for t+ > 50 the ratio

Figure 4. (a) Evolution of streamwise velocity in the absence of oscillation. Γ = 300, a = 0.15.
(b)–(e) Evolution of streamwise velocity for spanwise oscillation of the surface y = 0. with period
T = 100 and amplitude W0 = 12 and with Γ = 300, a = 0.15: (b) χ = 0; (c) χ = 1

8
; (d) χ = 1

4
; (e)

χ = 1
2
. In each case, streamwise velocity contours in (y, z) cross-plane are shown at various times.

∆q0 = 0.75.
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Figure 5. For caption see facing page.
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of the mean skin friction in the presence of oscillation to that in the absence of it
becomes very much dependent on the period T . They found that the value of this
ratio at around t+ = 500 was approximately 0.95 for T+ = 25, 0.6 for T+ = 100 and
0.9 for T+ = 200; for T+ = 500, the ratio oscillated in time between the values 1 and
1.3 over the range 50 < t+ < 500. Such large-time behaviour is beyond the scope of
the present model.

The ratio t
(osc)
R /t

(0)
R between the relaxation time in the presence of oscillation to

that in the absence of it is plotted against the period T in figure 7(b). The ratio
decreases from a value of approximately 0.65 for T+ = 25 to a minimum value of
0.57 approximately for T+ = 75 and then increases to around 0.75 for T+ = 500. The
ratio

C
(osc)
f /C

(0)
f = τ

(osc)m
w /τ

(0)
w ,

where the two bars denote averages over t(0 < t+ < 40) and z and m indicates an
average over χ, is shown in figure 7(c). The figure suggests an overall reduction of
around 10% in skin friction for all T over the time interval considered.

In the present model, we considered Γ+ = ±300 and a+ = 0.15. However, in a
turbulent boundary layer, a range of vortex strengths are possible and the local strain
rate, which is induced by larger eddies in the outer layer, can vary. In figure 8, we
show how the effect of the oscillation on C (osc)

f /C
(0)
f , depends on χ, a and Γ for a fixed

value of period T+ = 100. With a and Γ fixed also, the ratio oscillates (figure 8a)
between 0.95 and 0.85 over the range of χ, the minimum corresponding to χ = 1

2
.

For fixed Γ+ = ±300, the variation of C (osc)m
f /C

(0)
f , where the subscript m indicates an

average over χ, with a over the range 0.1 < a+ < 0.2 is shown in figure 8(b). The plot
indicates that somewhat better reduction may be obtained for a smaller value of a
than used here. However, if a is reduced much further, the coherent structures tend
to move away from the surface as they approach each other, so that the relaxation
times will be rather long. The variation of C (osc)m

f /C
(0)
f with Γ for a fixed value of

a+ = 0.15 is shown in figure 8(c). The plot suggests that smaller reductions in skin
friction would be obtained with weaker vortices.

Figure 9(a) shows the effect of the oscillation on the average Reynolds stress
distribution associated with the interaction. The distribution of −u′v′ in the absence
of the oscillation, denoted with a superscript (0) in the figure, shows characteristic
behaviour for turbulent boundary layers, increasing to a maximum value in the
region of the buffer layer, around y+ ' 13, and vanishing away from the wall. In a
turbulent boundary layer, the actual magnitude of the contribution to −u′v′ at each
y+ from interactions of the type considered here depends on the number density
of the distribution of coherent structures of different vortex strengths, in the range
50 6 Γ+ 6 500, and, at any instant, at various stages of decay (cf. Pullin & Saffman
1998). The wall oscillations produce a significant reduction in the magnitude of the
Reynolds stress, the extent of the reduction being dependent on the phase χ. The
maximum reduction is obtained for χ = 1

2
. If we consider all phases to be equally

likely and average the results over χ, then the result is as illustrated in figure 9(b).

Figure 5. (a) Evolution of Reynolds stress in the absence of oscillation. Γ = 300, a = 0.15. (b)–(e)
Evolution of Reynolds stress for spanwise oscillation of the surface y = 0, with period T = 100
and amplitude W0 = 12 and with Γ = 300, a = 0.15: (b) χ = 0; (c) χ = 1

8
; (d) χ = 1

4
; (e) χ = 1

2
.

In each case, contours of u′v′ in (y, z) cross-plane are shown at various times. ∆u′v′ = 0.75, shaded
contours denoting positive values of u′v′.
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Figure 6. (a) Effect of spanwise oscillation on time evolution of the skin-friction for
Γ = 300, a = 0.15. The skin friction in the absence of oscillation is compared with that in
the presence of spanwise wall oscillation with T = 100, W0 = 12 for different phases χ. (b) As in (a),
but showing the comparison of the time evolution of the skin friction in the absence of oscillation
with the corresponding skin friction, averaged over eight equally spaced phases χ, in the oscillatory
case.

The maximum value of this average value, denoted −u′v′(osc)m , is approximately half
that for the case without oscillation; the maximum occurs at y+ ' 13 in the absence
of oscillation and at y+ ' 14 in the presence of oscillation.

The corresponding rate of production of fluctuating kinetic energy associated with

the interaction may be estimated from the term −u′v′(dq0/dy) in the energy equation.
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Figure 7. (a) Evolution of the ratio, Q(t+), of the skin-friction in the oscillatory case, averaged over
z and phase χ, to the corresponding value in the absence of oscillation for various values of the

period T . Γ+ = 300, a+ = 0.15, W+
0 = 12. (b) Ratio of relaxation times t(osc)R and t

(0)
R as a function

of oscillation period T . (c) Ratio of averaged (with respect to z, t and χ) skin friction, C (osc)
f and

C
(0)
f as a function of oscillation period T .

−u′v′(dq0/dy) is plotted against y in figure 10. In the absence of oscillation, the
predicted distribution of this rate may be compared with that given for the wall
region of a pipe flow by Hinze (1975, p. 736); the shape of the curve and the location
of the peak are in qualitative agreement, however, the magnitudes of the peak values
differ since in turbulent flow this would depend not only on the number density of
coherent structures of the type considered here but also on the magnitudes of their
different strengths and, at any instant, on the stage of their decay. It is clear, however,
that oscillatory motion produces a significant reduction in this rate, consistent with
the observations in the DNS calculation (Jung et al. 1992). The maximum reduction
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Figure 8. Variation of C (osc)
f /C

(0)
f with (a) phase χ for fixed a = 0.15, Γ = 300; (b) with strain rate a

for fixed Γ = 300 and averaged over χ; (c) with vortex strength Γ for fixed a = 0.15 and averaged
over χ. T = 100, W0 = 12 in each case.

again occurs for χ = 1
2

(figure 10a) and the maximum value of the average rate of
production (figure 10b) in the presence of wall oscillation is approximately half that
for the case without oscillation.

In order to check the influence of the chosen initial conditions (2.10) and to assess
if averaging over the phases χ is justified, we computed the cases shown in figure 3(a)
and 3(b) over a long time, up to t+ = 400, introducing new, identical structures at an
interval of t+ = 40. By introducing the vortices periodically in the manner described,
so that a vortex introduced earlier has not completely died away before a next one
is introduced, we can set up, over several cycles, conditions such that when the final
vortex is introduced, the pre-existing conditions are very different from (2.10). The de-
velopment of the skin friction τw is shown in figure 11. The structure–wall interactions,
and ensuing introduction of the final vortex, did not significantly differ from the one
corresponding to the chosen initial conditions (2.10). Please note that the constraint
on the validity of the model still corresponds to t+ < O(20), where t+ = 0 corresponds
to the time of introduction of the final vortex. Further, averaging over the duration
of the computation gave results fairly similar to those, described above, obtained by
averaging over χ, suggesting that the approach considered here is reasonable.

Finally, in figure 12 we show the influence of the oscillation on the contribution,
f(q1/q1rms), of a single localized vortex pair to the probability density function for
∂u′/∂x = q1 associated with the cases depicted in figure 3; according to Schoppa
& Hussain (1997), vortex stretching associated with positive values of ∂u′/∂x is of
some importance in the process by which the coherent vortices are generated. The
p.d.f. of ∂u/∂x is typically measured in experiments involving turbulent flow and
has a characteristic shape whose deviation from a Gaussian is usually attributed to
intermittent and localized occurrence of coherent structures of the type considered
here; the p.d.f. has a shape in the form of a stretched exponential with significantly
higher values at the tails (see for example, Frisch 1995). It is emphasized that
in a turbulent boundary layer, unlike in figure 12, the p.d.f. is associated with a
distribution of various coherent structures of different strengths and at different
stages in their evolution (cf. Dhanak et al. 1997). However, it is interesting to note
that the contribution to such a p.d.f. from a single vortex pair, shown in figure 12, has a
distinct ‘stretched exponential’ appearance and see how such contributions could help
render the shape of the p.d.f. of ∂u′/∂x in a turbulent boundary layer characteristically
non-Gaussian. The values of f(ηj) at discrete values ηj were determined by counting
values of q1, over the entire space–time simulation domain, which fall within a suitably
sized bin ∆ηj centred around ηj; for the oscillatory case, f(q1/q1rms)

(osc) for individual
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Figure 9. (a) Effect of spanwise oscillation on Reynolds stress. The Reynolds stress in the case
without oscillation is compared with that for the oscillatory (T = 100, W0 = 12) case for different
values of the phase χ. The bar denotes average over z and t. Γ = 300, a = 0.15. (b) As in (a), but
showing the comparison of the Reynolds stress in the absence of oscillation with the corresponding
stress, averaged over eight equally spaced phases χ, in the oscillatory case.

phases were averaged over the phases. The normalized Gaussian distribution is
included in the plot for comparison. The differences between f(osc) in the oscillatory
case (dashed curve) and f(0) in the non-oscillatory case (solid curve) is not readily
apparent for small values of |q1/q1rms|, the root mean square value q1rms being 0.001 in
the former case compared with 0.0013 for the latter. However, values of |q1| > 3q1rms

are significantly reduced.
It is clear from the results presented above that the wall oscillations act to change
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Figure 10. (a) Effect of spanwise oscillation on rate of energy production. The production rate in
the case without oscillation is compared with that for the oscillatory (T = 100, W0 = 12) case for
different values of phase χ. The bar denotes average over z and t. Γ = 300, a = 0.15. (b) As in
(a), but showing the comparison of the rate of production in the absence of oscillation with the
corresponding rate, averaged over eight equally spaced phases χ, in the oscillatory case.

the coherent structure of turbulence in the inner layer of a boundary layer, in a
way which can be anticipated by the present model. It is expected that the rate of
occurrence of such structures will also be affected by the oscillation, in a way which
cannot be predicted in the present consideration. The latter will require detailed
consideration of the mechanism for turbulence production. Our results suggest that
any such mechanism, if it is associated with the presence of coherent quasi-streamwise
vortices, will be attenuated by the wall oscillations.
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Figure 11. Effect of spanwise oscillation on skin friction, averaged over z, during a long simulation
in which new structures are introduced in the flow at intervals of t+ = 40. Γ = 300, a = 0.15: ——,
without oscillation; - - - , spanwise oscillation with T = 100, W0 = 12 and χ = 0.
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Figure 12. Influence of spanwise oscillation on the p.d.f. f(q1/q1rms). The p.d.f.s f(osc) and f(0), for
——, the case in the absence of oscillation and - - -, the case with spanwise oscillation (T = 100,
W0 = 12 and averaged over χ) respectively, are compared with · · ·, the normalized Gaussian
distribution.

4. Discussion
The present considerations elucidate the interaction between imposed spanwise

wall oscillations and coherent quasi-streamwise vortical structures of the type found
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in the near-wall region of a turbulent boundary layer. According to the model
used here, these structures are the dominant features of the inner layer, together
with the associated formation and maintenance of long streamwise streaks with
low streamwise-speed momentum ejection in the middle and high streamwise-speed
down-wash at each side. When a periodic, spanwise cross-flow, associated with the
oscillatory motion of the surface beneath, is established in the surface layer, the
coherent structures are deformed in a way which promotes their interaction with the
rigid surface beneath, leading to their rapid annihilation. The severity of the process
depends on the phase of the oscillation relative to the appearance of such structures
near the wall and the rate of axial strain. The low-speed streaks are significantly
distorted owing to mixing, by the oscillatory motion, of momentum associated with
the low-speed ejection regions and that associated with the high-speed ‘sweep’ regions,
resulting in a reduction in the rate of momentum convection normal to the wall. This
in turn has a direct impact on the Reynolds stress and the skin friction. Over the
time of the evolution of the structure (t+ 6 40), the reduction in skin friction is fairly
independent of the period of oscillation, being around 10%, though a maximum
reduction is obtained for the period T+ = 75. This is consistent with the results
of the DNS calculation in a channel (Jung et al. 1992), which show that for small
times the skin friction reduction is around 10% for all periods considered; however,
for t+ � 40, when the present considerations no longer apply, the DNS calculation
indicates occurrence of reductions of around 40% for T+ = 100 whereas for T+ = 500
a net increase in skin friction results, the actual value undergoing large oscillations.
The present model shows that the wall oscillations significantly reduce the rate
of production of kinetic energy. In this regard, the DNS calculation suggests that
sustained oscillation results in suppression of coherent structures in the wall region.
It is possible that sustained reduction in the rate of production of kinetic energy in
the wall region, associated with the type of interaction studied here, has a significant
effect on the long-term phenomena and consequently on the mechanism by which
the coherent structures are generated in the wall region. Recent DNS work at low
Reynolds numbers (see Hamilton, Kim & Waleffe 1995; Waleffe, 1995; Schoppa &
Hussain, 1997; Jimenez & Pinelli 1998, for example) suggest that one such mechanism
is a self-sustaining process in the wall region whereby the structures generate the low-
speed streaks, decay and are regenerated through an instability of the flow associated
with the streaks. The present considerations suggest that by promoting a rapid decay
of the streamwise vortices and thereby weakening the low-speed streaks, the wall
oscillations may be expected to profoundly attenuate such a self-sustaining process.

This work was supported by the Office of Naval Research under grant N00014-
94-1-0453 (Program Manager: Dr Patrick Purtell) and by the National Science Foun-
dation under grant BCS-9211-847.
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